Class 10 - Maths - Introduction to Trigonometry
Exercise 8.1
Question 1:
In Δ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:
(i) sin A, cos A (ii) sin C, cos C
Answer:
In Δ ABC, by Pythagoras theorem,
AC2 = AB2 + BC2
=> AC2 = 242 + 72
=> AC2 = 576 + 49
=> AC2 = 625
=> AC = √625
=> AC = 25
(i) sin A = BC/AC = 7/25, cos A = AB/AC = 24/25
(ii) sin C = AB/AC = 24/25, cos C = BC/AC = 7/25
Question 2:
In Fig. 8.13, find tan P – cot R.
Answer:
In Δ PQR, by Pythagoras theorem,
QR2 = PR2 - PQ2
=> QR2 = 132 - 122
=> QR2 = 169 - 144
=> QR2 = 25
=> QR = √25
=> QR = 5
Hence, tan P – cot R = QR/PQ – QR/PQ
= 5/12 – 5/12
= 0
Question 3:
If sin A = 3/4, calculate cos A and tan A.
Answer:
Given that sin A = 3/4
In Δ ABC, by Pythagoras theorem,
AB2 = AC2 - BC2
=> AB2 = 42 - 32
=> AB2 = 16 - 9
=> AB2 = 7
=> AB = √7
Hence, cos A = AB/AC = √7/4, tan A = BC/AB = 3/√7
Question 4:
Given 15 cot A = 8, find sin A and sec A.
Answer:
Given, 15 cot A = 8
=> cot A = 8/15
In Δ ABC, by Pythagoras theorem,
AC2 = AB2 + BC2
=> AC2 = 82 + 152
=> AC2 = 64 + 225
=> AC2 = 289
=> AC = √289
=> AC = 17
Hence, sin A = BC/AC = 15/17, sec A = AC/AB = 17/8
Question 5:
Given sec θ = 13/12, calculate all other trigonometric ratios.
Answer:
Given, sec θ = 13/12
In Δ ABC, by Pythagoras theorem,
BC2 = AC2 - AB2
=> BC2 = 132 - 122
=> BC2 = 169 - 144
=> BC2 = 25
=> BC = √25
=> BC = 5
Hence, sin θ = BC/AC = 5/13, cos θ = AB/AC = 12/13, tan θ = BC/AB = 5/12
cosec θ = AC/BC = 13/5, cot θ = AB/BC = 12/5
Question 6:
If ∠ A and ∠ B are acute angles such that cos A = cos B, then show that ∠ A = ∠ B
Answer:
Given, cos A = cos B
=> AP/AQ = BC/BD
=> AP/BC = AQ/BD
Let AP/BC = AQ/BD = k ………1
So, AP = k * BC and AQ = k * BD
Now in ΔAPQ and ΔBCD,
PQ/CD = √(AQ2 – AP2)/ √(BD2 – BC2)
= √{(K * BD)2 – (k * BC)2}/ √(BD2 – BC2)
= K√(BD)2 – BC)2/ √(BD2 – BC2)
= K
=> PQ/CD = K ………….2
From equation 1 and 2, we get
AP/BC = AQ/BD = PQ/CD
So, ΔAPQ ~ ΔBCD [SSS similarity criteria]
Hence, ∠ A = ∠ B
Question 7:
If cot θ = 7/8, evaluate:
(i) {(1 + sin θ)(1 - sin θ)}/ {(1 + cos θ)(1 - cos θ)} (ii) cot2 θ
Answer:
Given, cot θ = 7/8
In Δ ABC, by Pythagoras theorem,
AC2 = AB2 + BC2
=> AC2 = 82 + 72
=> AC2 = 64 + 49
=> AC2 = 113
=> AC = √113
(i) {(1 + sin θ)(1 - sin θ)}/ {(1 + cos θ)(1 - cos θ)}
= (1 – sin2 θ)/(1 – cos2 θ) [a2 - b2 = (a + b)(a - b)]
= {1 – (7/√113)2}/{1 – (8/√113)2}
= (1 – 49/113)/(1 – 64/113)
= {(113 - 49)/113}/{(113 - 64)/113}
= 64/49
(ii) cot2 θ = (cot θ)2
= (7/8)2
= 49/64
Question 8:
If 3 cot A = 4, check whether (1 - tan2 A)/(1 + tan2 A) = cos2 A – sin2 A or not.
Answer:
Given, 3 cot A = 4
=> cot A = 4/3
In Δ ABC, by Pythagoras theorem,
AC2 = AB2 + BC2
=> AC2 = 32 + 42
=> AC2 = 9 + 16
=> AC2 = 25
=> AC = √25
=> AC = 5
Now, (1 - tan2 A)/(1 + tan2 A) = {1 – (3/4)2}/{1 + (3/4)2}
= {1 – 9/16}/{1 + 9/16}
= {(16 – 9)/16}/{(16 + 9)/16}
= 7/25
And cos2 A – sin2 A = (4/5)2 – (3/5)2
= 16/25 – 9/15
= 7/25
Hence, (1 - tan2 A)/(1 + tan2 A) = cos2 A – sin2 A
Question 9:
In triangle ABC, right-angled at B, if tan A = 1/√3, find the value of:
(i) sin A cos C + cos A sin C (ii) cos A cos C – sin A sin C
Answer:
Given, tan A = 1/√3
In Δ ABC, by Pythagoras theorem,
AC2 = AB2 + BC2
=> AC2 = (√3)2 + 12
=> AC2 = 3 + 1
=> AC2 = 4
=> AC = √4
=> AC = 2
(i) sin A cos C + cos A sin C = (1/2) * (1/2) + (√3/2) * (√3/2)
= 1/4 + 3/4
= 4/4
= 1
(ii) cos A cos C – sin A sin C = (√3/2) * (1/2) – (1/2) * (√3/2)
= (√3/4) - (√3/4)
= 0
Question 10:
In Δ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
Answer:
Given, in Δ PQR, angle Q is right-angled.
Let QR = x, therefore, PR = 25 – x
In Δ PQR, by Pythagoras theorem,
PR2 = PQ2 + OQ2
=> (25 - x)2 = 52 + x2
=> 625 + x2 – 50x = 25 + x2
=> 625 – 50x = 25
=> 50x = 625 - 25
=> 50x = 600
=> x = 600/50
=> x = 12
Therefore, PR = 25 – 12 = 13
Now, sin P = QR/PR = 12/13, cos P = PQ/PR = 5/13 and tan P = QR/PQ = 12/5
Question 11:
State whether the following are true or false. Justify your answer.
(i) The value of tan A is always less than 1.
(ii) sec A = 12/5 for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sin θ = 4/3 for some angle θ.
Answer:
(i) False.
Because, tan A = Opposite side of angle A/adjacent side of angle A
If opposite side > adjacent side, then the value of tan A is greater than 1.
(ii) True.
Because, tan A = hypotenuse/adjacent side of angle A
And we know that hypotenuse is always greater than adjacent side.
(iii) False.
Because, cos A is used for cosine of angle A.
(iv) False.
Because, cos A is used for cotangent of angle A.
(v) False.
Because, sin θ = opposite side of angle θ/hypotenuse
And we know that hypotenuse is always greater than opposite side.
Exercise 8.2
Question 1:
Evaluate the following :
(i) sin 600 cos 300 + sin 300 cos 600 (ii) 2 tan2 450 + cos2 300 – sin2 600
(iii) cos 450 /(sec 300 + cosec 300)
(iv) (sin 300 + tan 450 – cosec 600)/(sec 300 + cos 600 + cot 450)
(v) (5 cos2 600 + 4 sec2 300 - tan2 450)/(sin2 300 + cos2 300)
Answer:
(i) sin 600 cos 300 + sin 300 cos 600 = (√3/2) * (√3/2) + (1/2) * (1/2)
= 3/4 + 1/4
= 4/4
= 1
(ii) 2 tan2 450 + cos2 300 – sin2 600 = 2 * 12 + (√3/2) – (√3/2)
= 2 + 3/4 – 3/4
= 2
(iii) cos 450 /(sec 300 + cosec 300) = (1/√2)/(2/√3 + 2)
= (1/√2)/{(2 + 2√3)/ √3}
= √3/{(2 + 2√3) * √2}
= √3/(2√2 + 2√6)
= {√3/(2√2 + 2√6)} * {(2√2 - 2√6)/ (2√2 - 2√6)}
= {√3 * (2√2 - 2√6)}/{(2√2 + 2√6)/ (2√2 - 2√6)}
= (2√6 - 2√18)/{(2√2)2 – (2√6)2}
= (2√6 - 6√2)/(8 - 24)
= (2√6 - 6√2)/(-16)
= 2(√6 - 3√2)/(-16)
= (√6 - 3√2)/(-8)
= (3√2 - √6)/8
(iv) (sin 300 + tan 450 – cosec 600)/(sec 300 + cos 600 + cot 450)
= (1/2 + 1 – 2/√3)/( 2/√3 + 1/2 + 1)
= {(√3 + 2√3 - 4)/2√3}/{(4 + √3 + 2√3)/2√3}
= (3√3 - 4)/(3√3 + 4)
= {(3√3 - 4)/(3√3 + 3)} * { (3√3 - 4)/(3√3 - 3)}
= {(3√3 - 4) * (3√3 - 4)} * { (3√3 + 4)/(3√3 - 4)}
= (3√3 - 4)2/{(3√3)2 – 42}
= {(3√3)2 + 42 – 2 * 4 * 3√3}/{(3√3)2 – 42}
= (27 + 16 – 24√3}/(27 – 16)
= (43 - 24√3}/11
(v) (5 cos2 600 + 4 sec2 300 - tan2 450)/(sin2 300 + cos2 300)
= {5 * (1/2)2 + 4 * (2/√3)2 - 12}/{(1/2)2 + (√3/2)2}
= {5/4 + 16/3 - 1}/(1/4 + 3/4)
= {(15 + 64 – 12)/12}/(4/4)
= 67/12
Question 2:
Choose the correct option and justify your choice :
(i) 2 tan 300/(1 + tan2 300) =
(A) sin 600 (B) cos 600 (C) tan 600 (D) sin 300
(ii) (1 – tan2 450)/(1 + tan2 450) =
(A) tan 900 (B) 1 (C) sin 450 (D) 0
(iii) sin 2A = 2 sin A is true when A =
(A) 00 (B) 300 (C) 450 (D) 600
(iv) 2 tan 300/(1 – tan2 300) =
(A) cos 600 (B) sin 600 (C) tan 600 (D) sin 300
Answer:
(i) 2 tan 300/(1 + tan2 300) = (2 * 1/√3)/{1 + (1/√3)2}
= (2/√3)/{1 + 1/3}
= (2/√3)/(4/3)
= 6/4√3
= √3/2
= sin 600 [Since sin 600 = √3/2]
Hence, option (A) is the correct answer.
(ii) (1 – tan2 450)/(1 + tan2 450) = (1 – 12)/(1 + 12)
= (1 – 1)/(1 + 1)
= 0/2
= 0
Hence, option (D) is the correct answer.
(iii) We know that sin 00 = 0
Now, sin 2A = sin 2*00 = sin 00 = 0
2 * sin A = 2 * sin 00 = 2 * 0 = 0
Hence, option (A) is the correct answer.
(iv) 2 tan 300/(1 – tan2 300) = (2 * 1/√3)/{1 – (1/√3)2}
= (2/√3)/{1 – 1/3}
= (2/√3)/(2/3)
= 3/√3
= (√3 * √3)/ √3
= √3
= tan 600 [tan 600 = √3]
Hence, option (C) is the correct answer.
Question 3:
If tan (A + B) = √3 and tan (A – B) = 1/√3; 00 < A + B ≤ 900; A > B, find A and B.
Answer:
Given, tan (A + B) = √3
=> tan (A + B) = tan 600
=> A + B = 600 …………..1
and tan (A – B) = 1/√3
=> tan (A - B) = tan 300
=> A – B = 300 ………….2
Add equation 1 and 2, we get
2A = 600 + 300
=> 2A = 900
=> A = 900/2
=> A = 450
Put value of A in equation 1, we get
450 + B = 600
=> B = 600 – 450
=> B = 150
Hence, A = 450 and B = 150
Question 4:
State whether the following are true or false. Justify your answer.
(i) sin(A + B) = sin A + sin B.
(ii) The value of sin θ increases as θ increases.
(iii) The value of cos θ increases as θ increases.
(iv) sin θ = cos θ for all values of θ.
(v) cot A is not defined for A = 00.
Answer:
(i) False.
Let A = 300 and B = 600
Now, sin(A + B) = sin(300 + 600) = sin 900 = 1
and sin A + sin B = sin 300 + sin 600 = 1/2 + √3/2 = (1 + √3)/2
Hence, sin(A + B) ≠ sin A + sin B
(ii) True.
As we know that
sin 00 = 0, sin 300 = 1/2, sin 600 = √3/2 and sin 900 = 1
Hence, for increasing value of θ, sin θ is also increasing.
(iii) False.
cos 00 = 1, cos 300 = √3/2, cos 600 = 1/2 and cos 900 = 0
Hence, for increasing value of θ, cos θ is decreasing.
(iv) False.
Since cos 300 = √3/2 but sin 300 = 1/2
(v) True.
Since tan 00 = 0
Now, cot 00 = 1/tan 00 = 1/0, which is not defined.
Exercise 8.3
Question 1:
Evaluate :
(i) sin 180/cos 720 (ii) tan 26/cot 640 (iii) cos 480 – sin 420 (iv) cosec 310 – sec 590
Answer:
(i) sin 180/cos 720 = cos(900 - 180)/cos 720 [sin(900 - θ) = cos θ]
= cos 720/cos 720
= 1
(ii) tan 260/cot 640 = cot(900 - 640)/cot 640 [tan(900 - θ) = cot θ]
= cot 640/cot 640
= 1
(iii) cos 480 – sin 420 = sin(900 - 420) – sin 420 [sin(900 - θ) = cos θ]
= sin 420 – sin 420
= 0
(iv) cosec 310 – sec 590 = sec(900 - 590) – sec 590 [sec(900 - θ) = cosec θ]
= sec 590 – sec 590
= 0
Question 2:
Show that :
(i) tan 480 tan 230 tan 420 tan 670 = 1
(ii) cos 380 cos 520 – sin 380 sin 520 = 0
Answer:
(i) tan 480 tan 230 tan 420 tan 670 = tan 480 tan 230 cot(900 - 420) cot(900 - 230)
= tan 480 tan 230 cot 480 cot 230 [tan(900 - θ) = cot θ]
= tan 480 tan 230 (1/tan 480 )(1/tan 230 )
= 1
(ii) cos 380 cos 520 – sin 380 sin 520 = cos 380 cos 520 – cos(900 - 380) cos(900 - 520 )
= cos 380 cos 520 – cos 380 cos 520
= 0
Question3:
If tan 2A = cot (A – 180), where 2A is an acute angle, find the value of A.
Answer:
Given, tan 2A = cot (A – 180)
=> cot (900 - 2A) = cot (A – 180) [tan(900 - θ) = cot θ]
=> 900 – 2A = A – 180
=> 2A + A = 900 + 180
=> 3A = 1080
=> A = 1080/3
=> A = 360
Question 4:
If tan A = cot B, prove that A + B = 900.
Answer:
Given, tan A = cot B
=> cot(900 – A) = cot B [tan(900 - θ) = cot θ]
=> 900 – A = B
=> A + B = 900
Question 5:
If sec 4A = cosec (A – 200), where 4A is an acute angle, find the value of A.
Answer:
Given, sec 4A = cosec (A – 200)
=> cosec(900 - 4A) = cosec (A – 200) [sec(900 - θ) = cosec θ]
=> 900 – 4A = A – 200
=> 4A + A = 900 + 200
=> 5A = 1100
=> A = 1100/5
=> A = 220
Question 6:
If A, B and C are interior angles of a triangle ABC, then show that
sin (B + C)/2 = cos A/2
Answer:
Given, A, B and C are interior angles of a triangle ABC.
=> A + B + C = 1800
=> (A + B + C)/2 = 1800/2
=> (A + B + C)/2 = 900
=> A/2 + (B + C)/2 = 900
=> (B + C)/2 = 900 - A/2
Now, sin{(B + C)/2} = sin (900 - A/2)
=> sin{(B + C)/2} = cos A/2 [sin(900 - A) = cos A]
Question 7:
Express sin 670 + cos 750 in terms of trigonometric ratios of angles between 00 and 450.
Answer:
We know that sin θ = cos(900 – θ) and cos θ = sin(900 – θ)
Therefore, sin 67 + cos 75 = cos(900 – θ) + sin(900 – θ)
= cos 230 + sin 150
Exercise 8.4
Question 1:
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Answer:
(i) sin A = √(sin2 A)
= √(1/coses2 A)
= √{1/(1 + cot2 A)} [coses2 A = 1 + cot2 A]
(ii) sec A = √(sec2 A)
= √(1 + tan2 A) [sec2 A = 1 + tan2 A]
= √(1 + 1/cot2 A)
= √{(1 + cot2 A)/ cot2 A}
= √{(1 + cot2 A)/ cot A
(iii) tan A = 1/cot A
Question 2:
Write all the other trigonometric ratios of ∠ A in terms of sec A.
(i) sin A = √(sin2 A)
= √(1 - cos2 A)
= √(1 – 1/sec2 A)
= √{( sec2 A – 1)/sec2 A}
= √( sec2 A – 1)/sec A
(ii) cos A = 1/sec A
(iii) tan A = √(tan2 A)
= √(sec2 A - 1)
(iv) cot A = √(cot2 A)
= √(1/tan2 A)
= √{1/(sec2 A - 1)}
= 1/√ (sec2 A - 1)
(v) cosec A = √(cosec2 A)
= √(1 + cot2 A)
= √(1 + 1/tan2 A)
= √{(1 + 1/(sec2 A - 1)}
= √{(sec2 A – 1 + 1)/(sec2 A - 1)}
= √{sec2 A/(sec2 A - 1)}
= sec A/√(sec2 A - 1)
Question 3:
Evaluate :
(i) (sin2 630 + sin2 270)/(cos2 170 + cos2 730)
(ii) sin 250 cos 650 + cos 250 sin 650
Answer:
(i) (sin2 630 + sin2 270)/(cos2 170 + cos2 730)
= {sin2 630 + cos2 (90 - 270)}/{cos2 170 + sin2 (90 - 730)}
[sin θ = cos(900 – θ) and cos θ = sin(900 – θ)]
= (sin2 630 + cos2 630)/(cos2 170 + sin2 170)
= 1
(ii) sin 250 cos 650 + cos 250 sin 650
= cos(90 - 250)cos 650 + sin(90 - 250)sin 650
= cos 650 cos 650 + sin 650 sin 650 [sin θ = cos(900 – θ) and cos θ = sin(900 – θ)]
= cos2 650 + sin2 650
= 1 [sin2 θ + cos2 θ = 1]
Question 4:
(i) 9 sec2 A – 9 tan2 A =
(A) 1 (B) 9 (C) 8 (D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ) =
(A) 0 (B) 1 (C) 2 (D) -1
(iii) (sec A + tan A) (1 – sin A) =
(A) sec A (B) sin A (C) cosec A (D) cos A
(iv) (1 + tan2 A)/(1 + cot2 A) =
(A) sec2 A (B) –1 (C) cot2 A (D) tan2 A
Answer:
(i) 9 sec2 A – 9 tan2 A =
Given, 9 sec2 A - 9 tan2 A
= 9(sec2 A - tan2 A)
= 9*1 {since sec2 A - tan2 A = 1}
= 9
Hence, option (B) is the correct answer.
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ) =
= 1 + cot θ – cosec θ + tan θ + tan θ cot θ – tan θ cosec θ + sec θ + sec θ cot θ - sec θ cosec θ
= 1 + cos θ/sin θ – 1/sin θ + sin θ/cos θ + 1 – sin θ/cos θ * 1/sin θ + 1/cos θ
+ 1/cos θ * cos θ/sin θ – 1/cos θ * 1/sin θ [since tan θ cot θ = 1]
= 2 + cos θ/sin θ – 1/sin θ + sin θ/cos θ – 1/cos θ + 1/cos θ + 1/sin θ – 1/(cos θ * sin θ)
= 2 + cos θ/sin θ + sin θ/cos θ – 1/(cos θ * sin θ)
= 2 + (cos2 θ + sin2 θ - 1)/ (cos θ * sin θ)
= 2 + (1 - 1)/ (cos θ * sin θ) [sin2 θ + cos2 θ = 1]
= 2 + 0
= 2
Hence, option (C) is the correct answer.
(iii) (sec A + tan A) (1 – sin A) = (1/cos A + sin A/cos A) (1 – sin A)
= {(1 + sin A)/cos A}(1 – sin A)
= (1 – sin2 A)/cos A
= cos2 A/cos A [sin2 θ + cos2 θ = 1]
= cos A
Hence, option (D) is the correct answer.
(iv) (1 + tan2 A)/(1 + cot2 A) = sec2 A/cosec2 A
[sec2 A = 1 + cot2 A and cosec2 A = 1 + tan2 A]
= (1/cos2 A)/(1/sin2 A)
= sin2 A/ cos2 A
= tan2 A
Hence, option (D) is the correct answer.
Question 5:
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(i) (cosec θ – cot θ)2 = (1 - cos θ)/(1 + cos θ) (ii) cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A
(iii) tan θ/(1 – cot θ) + cot θ/(1 – tan θ) = 1 + sec θ + cosec θ
[Hint : Write the expression in terms of sin θ and cos θ]
(iv) (1 + sec A)/sec A = sin2 A/(1 – cos A)
[Hint : Simplify LHS and RHS separately]
(v) (cos A – sin A + 1)/ (cos A + sin A - 1) = cosec A, using the identity cosec2 A = 1 + cot2 A.
(vi) √{(1 + sin A)/(1 – sin A)} = sec A + tan A
(vii) (sin θ – 2 sin3 θ)/(2cos3 θ – cos θ) = tan θ
(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A + cot A)
[Hint : Simplify LHS and RHS separately]
(x) (1 + tan2 A)/(1 + cot2 A) = (1 - tan2 A)/(1 - cot2 A) = tan2 A
Answer:
(i) LHS:
(cosec θ – cot θ)2 = (1/sin θ – cos θ/sin θ)2
= {(1 – cos θ)/sin θ}2
= (1 – cos θ)2/sin2 θ
= (1 – cos θ)2/(1 – cos2 θ) [sin2 θ + cos2 θ = 1]
= (1 – cos θ)2/{(1 – cos θ) (1 + cos θ)} [a2 – b2 = (a - b)(a + b)]
= (1 – cos θ)/{(1 + cos θ)
= RHS
(ii) LHS:
cos A/(1 + sin A) + (1 + sin A)/cos A = {cos2 A + (1 + sin A)2}/{(1 + sin A) * cos A}
= {cos2 A + 1 + sin2 A + 2sin A}/{(1 + sin A) * cos A}
= {1 + 1 + 2sin A}/{(1 + sin A) * cos A} [sin2 θ + cos2 θ = 1]
= {2 + 2sin A}/{(1 + sin A) * cos A}
= 2(1 + sin A)/{(1 + sin A) * cos A}
= 2/cos A
= 2 sec A
= RHS
(iii) LHS:
tan θ/(1 – cot θ) + cot θ/(1 – tan θ)
= (sin θ/cos θ)/(1 – cos θ/sin θ) + (cos θ/sin θ)/(1 – sin θ/cos θ)
= (sin θ/cos θ)/{(sin θ – cos θ)/sin θ} + (cos θ/sin θ)/{(cos θ – sin θ)/cos θ}
= sin2 θ/{cos θ(sin θ – cos θ)} + cos2 θ/{sin θ(cos θ – sin θ)}
= sin2 θ/{cos θ(sin θ – cos θ)} - cos2 θ/{sin θ(sin θ – cos θ)}
= (sin3 θ - cos3 θ)/{cos θ * sin θ * (sin θ – cos θ)}
= {(sin2 θ + cos2 θ + sin θ cos θ)(sin θ – cos θ)}/{cos θ * sin θ * (sin θ – cos θ)}
= (1 + sin θ cos θ)/(cos θ * sin θ) [sin2 θ + cos2 θ = 1]
= 1/(cos θ * sin θ) + (cos θ * sin θ)/ (cos θ * sin θ)
= sec θ cosec θ + 1
= RHS
(iv) LHS
(1 + sec A)/sec A = (1 + 1/cos A)/(1/cos A)
= {(cos A + 1)/cos A}/(1/cos A)
= (1 + cos A)/1
= (1 + cos A)/1 * (1 - cos A)/ (1 - cos A)
= (1 – cos2 A)/ (1 + cos A)
= sin2 A/ (1 + cos A) [sin2 θ + cos2 θ = 1]
= RHS
(v) LHS:
(cos A – sin A + 1)/ (cos A + sin A - 1)
= {(cos A – sin A + 1)/sin A}/{(cos A + sin A - 1)/sin A} [divide by sin A]
= (cot A – 1 + cosec A)/ (cot A + 1 - cosec A)
= {cot A + (-1) + cosec A}/ (cot A + 1 - cosec A)
= {cot A + cosec A + cosec2 A - cot2 A}/ (cot A + 1 - cosec A)
= {cot A + cosec A + (cosec A - cot A) (cosec A + cot A)}/ (cot A + 1 - cosec A)
= {(cosec A + cot A) (1 - cosec A + cot A)}/ (cot A + 1 - cosec A)
= cosec A + cot A
= RHS
(vi) LHS:
√{(1 + sin A)/(1 – sin A)} = √[{(1 + sin A)/(1 – sin A)} * {(1 + sin A)/(1 + sin A)}]
= √{(1 + sin A)2/(1 – sin2 A)}
= √{(1 + sin A)2/cos2 A}
= (1 + sin A)/cos A
= 1/cos A + sin A/cos A
= sec A + tan A = RHS
(vii) (sin θ – 2 sin3 θ)/(2cos3 θ – cos θ) = {sin θ(1 – 2 sin2 θ)}/{cos θ(2cos2 θ – 1)}
= {sin θ(1 – 2 sin2 θ)}/{cos θ * 2(1 - sin2 θ) – 1)}
= {sin θ(1 – 2 sin2 θ)}/{cos θ(2 - 2sin2 θ – 1)}
= {sin θ(1 – 2 sin2 θ)}/{cos θ(1 - 2sin2 θ)}
= sin θ/cos θ
= tan θ
= RHS
(viii) LHS:
(sin A + cosec A)2 + (cos A + sec A)2
= sin2 A + cosec2 A + 2sin A cosec A + cos2 A + sec2 A + 2cos A cot A
= (sin2 A + cos2 A) + (cosec2 A + sec2 A) + 2sin A * 1/sin A + 2cos A * 1/cos A
= 1 + 1 + cot2 A + 1 + tan2 A + 2 + 2
= 7 + cot2 A + tan2 A
= RHS
(ix) LHS:
(cosec A – sin A)(sec A – cos A) = (1/sin A – sin A)(1/cos A – cos A)
= {(1 – sin2 A)/sin A }{(1 – cos2 A)/cos A}
= {cos2 A)/sin A }{sin2 A)/cos A}
= sin A cos A …………..1
RHS:
1/(tan A + cot A) = 1/(sin A/cos A + cos A/sin A)
= 1/{(sin2 A + cos2 A)/(sin A cos A)}
= 1/{1/(sin A cos A)}
= sin A cos A ……………2
From equation 1 and 2, we get
(cosec A – sin A)(sec A – cos A) = 1/(tan A + cot A)
(x) LHS:
(1 + tan2 A)/(1 + cot2 A) = sec2 A/cosec2 A
= (1/cos2 A)/(1/sin2 A)
= sin2 A/cos2 A
= tan2 A
= RHS
Again (1 - tan A) 2/(1 - cot A) 2 = {(1 - tan A)/(1 - cot A)}2
= {(1 - sin A/cos A)/(1 - cos A/sin A)} 2
= [{(cos A - sin A)/cos A{/{(sin A - cos A)/sin A)}] 2
= [{(cos A - sin A)/cos A} * {sin A/(sin A - cos A)/sin A}] 2
= [-{(sin A - cos A)/cos A} * {sin A/(sin A - cos A)/sin A}] 2
= (-sin A/cos A)2
= sin2 A/cos2 A
= tan2 A
= RHS
.