PRACTICE NCQS

CLASS 12 MATHS (TERM - I) RELATION AND FUNCTIONS

Question 1:

Relation R in the set A of human beings in a town at a particular time given by

 $R = \{(x, y): x \text{ is wife of } y\}$, then R is _____ relation.

- (a) Reflexive but not symmetric
- (b) Symmetric but not transitive
- (c) Transitive but not reflexive
- (d) None of these

Answer: (d) None of these

Given, $R = \{(x, y): x \text{ is the wife of } y\}$

Now, $(x, x) \notin R$

Since x cannot be the wife of herself.

So, R is not reflexive.

Now, let $(x, y) \in R$

=> x is the wife of y.

Clearly y is not the wife of x.

So, (y, x) ∉ R

Indeed if x is the wife of y, then y is the husband of x.

So, R is not transitive.

Let $(x, y), (y, z) \in \mathbb{R}$

=> x is the wife of y and y is the wife of z.

This case is not possible. Also, this does not imply that x is the wife of z.

=> (x, z) ∉ R

So, R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

Question 2:

Let T be the set of all triangles in a plane with R a relation in T given by

 $R = \{(T_1, T_2) : T_1 \text{ is congruent to } T_2\}$. Then R is a/an _____ relation.

- (a) reflexive
- (b) symmetric
- (c) transitive
- (d) equivalence

Answer: (d) equivalence

R is reflexive, since every triangle is congruent to itself.

Again, $(T_1, T_2) \in R \Rightarrow T_1$ is congruent to T_2

 \Rightarrow T₂ is congruent to T₁

 $\Rightarrow (\mathsf{T}_2,\,\mathsf{T}_1)\in\mathsf{R}$

Hence, R is symmetric.

Moreover,

(T₁, T₂), (T₂, T₃) $\in R \Rightarrow T_1$ is congruent to T₂ and T₂ is congruent to T₃

 \Rightarrow T₁ is congruent to T₃

 $\Rightarrow (\mathsf{T}_1, \mathsf{T}_3) \in \mathsf{R}$

Hence, R is transitive.

Therefore, R is an equivalence relation.

Question 3:

The relation R on R defined as $R = \{(a, b): a \le b\}$ is

- (a) reflexive, transitive and symmetric
- (b) reflexive and symmetric but not transitive
- (c) reflexive and transitive but not symmetric
- (d) None of these

Answer: (c) reflexive and transitive but not symmetric

 $R = \{(a, b): a \le b\}$ Clearly (a, a) $\in R$ [as a = a] So, R is reflexive. Now, (2, 4) $\in R$ (as 2 < 4) But, (4, 2) $\notin R$ as 4 is greater than 2. So, R is not symmetric. Now, let (a, b), (b, c) $\in R$. Then, a \le b and b \le c => a \le c => (a, c) $\in R$ So, R is transitive.

Hence R is reflexive and transitive but not symmetric.

Question 4:

A relation R in set A = $\{1, 2, 3\}$ is defined as R = $\{(1, 1), (1, 2), (2, 2), (3, 3)\}$.

Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?

- (a) (1, 1)
- (b) (1, 2)
- (c) (2, 2)
- (d) (3, 3)

Answer: (b) (1, 2)

Given, relation R = {(1, 1), (1, 2), (2, 2), (3, 3)}

Here, (1, 2) is given.

So for symmetric, it should have (2, 1) also.

If we remove (1, 2), then the relation will be reflexive, symmetric and

transitive.

Question 5:

The relation R in the set Z of integers given by $R = \{(a, b) : 2 \text{ divides } a - b\}$ is

a/an

- (a) reflexive
- (b) symmetric
- (c) transitive
- (d) equivalence

Answer: (d) equivalence

R is reflexive, as 2 divides (a - a) for all $a \in Z$.

Further, if $(a, b) \in R$, then 2 divides a - b.

Therefore, 2 divides b – a also.

Hence, $(b, a) \in R$, which shows that R is symmetric.

Similarly, if $(a, b) \in R$ and $(b, c) \in R$, then a - b and b - c are divisible by 2.

Now, a - c = (a - b) + (b - c) is even. {Difference of two even number is even}

So, (a - c) is divisible by 2.

This shows that R is transitive.

Thus, R is an equivalence relation in Z.

Question 6:

The relation R in the set A = { $x \in Z$: $0 \le x \le 12$ }, given by

 $R = \{(a, b) : |a - b| \text{ is a multiple of } 4\}$

is an equivalence relation. Then set of all elements related to 1 is

(a) {0, 1, 2, 5}

- (b) A
- (c) {1, 5, 9}
- (d) {2, 5, 7}

Answer: (c) {1, 5, 9}

Given, R is an equivalence relation.

The set of elements related to 1 is {1, 5, 9} as

|1-1| = 0 is a multiple of 4.

|5-1| = 4 is a multiple of 4.

|9-1| = 8 is a multiple of 4.

Question 7:

Let L be the set of all lines in XY plane and R be the relation in L defined as

 $R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}.$ Then R is a/an

- (a) reflexive
- (b) symmetric
- (c) transitive
- (d) equivalence

Answer: (d) equivalence

Given, $R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}$ R is reflexive as any line L_1 is parallel to itself i.e., $(L_1, L_1) \in R$.

Now, let $(L_1, L_2) \in R$

 \Rightarrow L₁ is parallel to L₂

 \Rightarrow L₂ is parallel to L₁

 \Rightarrow (L₂, L₁) \in R

So, R is symmetric.

Now, let (L_1, L_2) , $(L_2, L_3) \in R$

 \Rightarrow L₁ is parallel to L₂

Also, L₂ is parallel to L₃

 \Rightarrow L₁ is parallel to L₃

So, R is transitive.

Hence, R is an equivalence relation.

Question 8:

Let R be the relation in the set N given by $R = \{(a, b): a = b - 2, b > 6\}$. Choose the correct answer.

- (a) $(2, 4) \in R$
- (b) (3, 8) ∈ R
- (c) (6, 8) ∈ R

(d) (8, 7) ∈ R

Answer: (c) (6, 8) ∈ R

Given, R = {(a, b): a = b - 2, b > 6} Since $b > 6, (2, 4) \notin R$ Also, $as 3 \neq 8 - 2$ So, (3, 8) $\notin R$ And, $as 8 \neq 7 - 2$ So, (8, 7) $\notin R$ Now, consider (6, 8).

We have 8 > 6 and also, 6 = 8 − 2 So, (6, 8) ∈ R

Question 9:

Let A be the set of all 50 students of Class X in a school. Let $f : A \rightarrow N$ be

function defined by f(x) = roll number of the student x. Then f is

- (a) one-one and onto
- (b) one-one but not onto
- (c) not one-one onto
- (d) neither one-one nor onto

Answer: (b) one-one but not onto

No two different students of the class can have same roll number.

Therefore, f must be one-one.

We can assume without any loss of generality that roll numbers of students are from 1 to 50. This implies that 51 in N is not roll number of any student of the class, so that 51 cannot be image of any element of X under f. Hence, f is not onto.

Question 10:

The function f is defined as f: Z \rightarrow Z given by f(x) = x². Then f is

- (a) injective but not surjective
- (b) Not injective but surjective
- (c) injective and surjective
- (d) neither injective nor surjective

Answer: (d) neither injective nor surjective

f: Z \rightarrow Z is given by f(x) = x² It is seen that f(-1) = f(1) = 1, but -1 \neq 1 So, f is not injective. Now, -2 \in Z. But, there does not exist any element x \in Z such that f(x) = -2 or x² = -2 So, f is not surjective. Hence, function f is neither injective nor surjective.

Question 11:

The function $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined as $(x) = x^3$ is:

- (a) One-one but not onto
- (b) Not one-one but onto
- (c) Neither one-one nor onto
- (d) One-one and onto

Answer: (d) One-one and onto

Given, f: $R \rightarrow R$ given by $f(x) = x^3$ It is seen that for x, $y \in R$, f(x) = f(y) $\Rightarrow x^3 = y^3$ $\Rightarrow x = y$ So, f is one-one. Again, let f(x) = y such that $y \in R$ $=> x^3 = y$ $=> x = y^{1/3}$ Here, y is a real number and for all values of y, we get value of y

Here, y is a real number and for all values of y, we get value of x. So, f is onto.

Hence, f is one-one and onto function.

Question 12:

The function $f : N \rightarrow N$, given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2,

is

- (a) onto and one-one
- (b) not onto but not one-one
- (c) onto but not one-one
- (d) neither onto nor one-one

Answer: (c) onto but not one-one

f is not one-one, as f(1) = f(2) = 1But f is onto, as given any $y \in N$, $y \neq 1$, We can choose x as y + 1 such that f(y + 1) = y + 1 - 1 = yAlso for $1 \in N$, we have f(1) = 1So, f is onto but not one-one.

Question 13:

The Greatest Integer Function f: $R \rightarrow R$ given by f(x) = [x] where [x] denotes the

greatest integer less than or equal to x, is

- (a) one one and onto
- (b) one one but not onto
- (c) not one one but onto
- (d) neither one one nor onto

Answer: (d) neither one – one nor onto

f: $R \rightarrow R$ is given by, f(x) = [x]It is seen that f(1.2) = [1.2] = 1, f(1.9) = [1.9] = 1So, f(1.2) = f(1.9), but $1.2 \neq 1.9$ Hence, f is not one – one. Now, consider $0.7 \in R$ It is known that f(x) = [x] is always an integer. Thus, there does not exist any element $x \in R$ such that f(x) = 0.7So, f is not onto. Hence, the greatest integer function is neither one – one nor onto.

Question 14:

Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Then f is (a) one-one (b) onto (c) not one – one (d) not onto

Answer: (a) one-one

It is given that A = {1, 2, 3}, B = {4, 5, 6, 7}

f: A \rightarrow B is defined as f = {(1, 4), (2, 5), (3, 6)}

So, f (1) = 4, f (2) = 5, f (3) = 6

It is seen that the images of distinct elements of A under f are distinct.

Hence, function f is one – one.

Question 15:

Let f: $R \rightarrow R$ be defined as $f(x) = x^4$. Choose the correct answer.

- (a) f is one-one onto
- (b) f is many-one onto
- (c) f is one-one but not onto
- (d) f is neither one-one nor onto

Answer: (d) f is neither one-one nor onto

f: $R \rightarrow R$ is defined as $f(x) = x^4$ Let x, $y \in R$ such that f(x) = f(y) $\Rightarrow x^4 = y^4$ $\Rightarrow x = \pm y$ So, f(x) = f(y) does not imply that x = yFor example f(1) = f(-1) = 1So, f is not one-one. Consider an element 2 in co-domain R. It is clear that there does not exist any x in domain R such that f(x) = 2So, f is not onto.

Hence, function f is neither one – one nor onto.

Question 16:

What type of relation is 'less than' in the set of real numbers?

- (a) only symmetric
- (b) only transitive
- (c) only reflexive
- (d) equivalence

Answer: (b) only transitive

If $a \in R$, a is not less than a.

=> The relation "less than" is not reflexive.
If a, b ∈ R, and a is less than b then b is not less than a.
=> The relation "less than" is not symmetric.
If a, b, c ∈ R, and a is less than b and b is less than c then a is less than c.
=>The relation "less than" is transitive.
Hence, the relation "less than" is also not an equivalence relation.

Question 17:

Given set A = $\{1, 2, 3\}$ and a relation R = $\{(1, 2), (2, 1)\}$, the relation R will be

- (a) reflexive if (1, 1) is added
- (b) symmetric if (2, 3) is added
- (c) transitive if (1, 1) is added
- (d) symmetric if (3, 2) is added

Answer: (c) transitive if (1, 1) is added

Here, $(1, 2) \in \mathbb{R}$, $(2, 1) \in \mathbb{R}$ So, for transitive, (1, 1) should belong to \mathbb{R} .

Question 18:

Given set A = {a, b, c}. An identity relation in set A is (a) R = {(a, b), (a, c)} (b) R = {(a, a), (b, b), (c, c)} (c) R = {(a, a), (b, b), (c, c), (a, c)} (d) R= {(c, a), (b, a), (a, a)}

Answer: (b) R = {(a, a), (b, b), (c, c)}

A relation R is an identity relation in set A if for all $a \in A$, $(a, a) \in R$.

So, $R = \{(a, a), (b, b), (c, c)\}$ is an identity relation.

Question 19:

Let S be the set of all real numbers. Then the relation $R = \{(a, b): a^2 + b^2 = 1\}$ is

- (a) symmetric and transitive
- (b) symmetric and reflexive but not transitive
- (c) symmetric but neither reflexive nor transitive
- (d) symmetric, reflexive and transitive

Answer: (c) symmetric but neither reflexive nor transitive

(i) R is symmetric, since

 $aRb \Rightarrow a^2 + b^2 = 1$

- \Rightarrow b² + a² =1 \Rightarrow bRa
- (ii) R is not reflexive, since 1 is not related to 1, as
- $1^2 + 1^2 = 1$ is not true.
- (iii) Clearly, $1/2R\sqrt{3}/2$ and $\sqrt{3}/2R1/2$
- But 1/2 is not related to 1/2 since
- $(1/2)^2 + (1/2)^2 = 1$ is not true.
- So, R is not transitive.

Question 20:

Let S be the set of all real numbers and let R be a relation on S defined by

 $aRb \Leftrightarrow |a| \leq b$. Then, R is

- (a) Reflexive but neither symmetric nor transitive
- (b) Symmetric but neither reflexive nor transitive
- (c) Transitive but neither reflexive nor symmetric
- (d) Reflexive, symmetric and transitive

Answer: (c) Transitive but neither reflexive nor symmetric

```
Given, S = set of all real numbers.
And for a, b \in S, aRb \langle = \rangle |a| \leq b
Reflexive:
Take, -1 \in S, |-1| = 1
But |-1| ≤ 1
=> -1 <del>R</del> -1
So, R is not reflexive.
Symmetric:
Take, -2, 3 \in S, such that |-2| \leq 3
But |3| \leq -2 is not true.
=> 3 <del>R</del> -2
So, R is not symmetric.
Transitive:
Take, a, b, c \in S, such that aRb, bRc i.e. |a| \le b and |b| \le c
Since |a| \le b
\Rightarrow |a| \leq |b| \leq c
\Rightarrow |a| \leq c
=> aRc
So, R is transitive.
```

Question 21:

The function $f : R \rightarrow R$ defined by f(x) = (x - 1)(x - 2)(x - 3) is

- (a) one-one but not onto
- (b) onto but not one-one
- (c) both one-one and onto
- (d) neither one-one and onto

Answer: (b) onto but not one-one

Given, f(x) = (x - 1)(x - 2)(x - 3)One-one: $\Rightarrow f(1) = (1 - 1)(1 - 2)(1 - 3) = 0$ $\Rightarrow f(2) = (2 - 1)(2 - 2)(2 - 3) = 0$ $\Rightarrow f(3) = (3 - 1)(3 - 1)(3 - 3) = 0$ $\Rightarrow f(1) = f(2) = f(3) = 0$ We can see, 1, 2, 3 has same image 0. So, f is not one-one. Onto: Let y be an element in the co-domain R, such that

y = f(x) $\Rightarrow y = (x - 1)(x - 2)(x - 3)$ Since, $y \in R$ and $x \in R$ So, f is onto.

Question 22:

Let $g(x) = x^2 - 4x - 5$, then

- (a) g is one-one on R
- (b) g is not one-one on R
- (c) g is bijective on R
- (d) None of these

Answer: (b) g is not one-one on R

Let
$$g(x_1) = g(x_2)$$

=> $x_1^2 - 4x_1 - 5 = x_2^2 - 4x_2 - 5$
=> $x_1^2 - x_2^2 = 4(x_1 - x_2)$

=> $(x_1 - x_2)(x_1 + x_2 - 4) = 0$ => $x_1 = x_2$ or $x_1 + x_2 = 4$ => $x_1 = x_2$ or $x_1 = 4 - x_2$ Since, there are two values of x_1 for which $g(x_1) = g(x_2)$. So, g(x) is not one-one $\forall x \in \mathbb{R}$.

Question 23:

Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let $f = {(1, 4), (2, 5), (3, 6)}$ be a function from A to B. Based on the given information, f is best defined as:

- (a) Surjective function
- (b) Injective function
- (c) Bijective function
- (d) function

Answer: (b) Injective function

Injective means one-one. Since, all elements have unique image So, R is injective Surjective means onto. Since, all elements do not have pre-image So, R is not surjective.

Case study based questions

Question 24:

A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever.

Let I be the set of all citizens of India who were eligible to exercise their voting right in general election held in 2019. A relation 'R' is defined on I as follows: $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting right in general election } -$ 2019}

(i). Two neighbors X and Y \in I. X exercised his voting right while Y did not cast her vote in general election – 2019. Which of the following is true?

- (a) (X, Y) ∈ R
- (b) $(Y, X) \in R$
- (c) (X, X) ∉ R
- (d) (X, Y) ∉ R

(ii). Mr.'X' and his wife 'W' both exercised their voting right in general election -2019, Which of the following is true?

- (a) both (X, W) and (W, X) $\in \mathbb{R}$
- (b) $(X, W) \in R$ but $(W, X) \notin R$
- (c) both (X, W) and (W, X) $\notin R$
- (d) $(W, X) \in R$ but $(X, W) \notin R$

(iii). Three friends F_1 , F_2 and F_3 exercised their voting right in general election-

- 2019, then which of the following is true?
- (a) $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \in R$
- (b) $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \notin R$

(c) $(F_1, F_2) \in R$, $(F_2, F_2) \in R$ but $(F_3, F_3) \notin R$

- (d) $(F_1, F_2) \notin R$, $(F_2, F_3) \notin R$ and $(F_1, F_3) \notin R$
- (iv). The above defined relation R is _____
- (a) Symmetric and transitive but not reflexive
- (b) Universal relation
- (c) Equivalence relation
- (d) Reflexive but not symmetric and transitive

(v). Mr. Shyam exercised his voting right in General Election – 2019, then Mr.

Shyam is related to which of the following?

- (a) All those eligible voters who cast their votes
- (b) Family members of Mr. Shyam
- (c) All citizens of India
- (d) Eligible voters of India

Answers:

(i). (d) (X, Y) ∉ R

Given, $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting right in general election - 2019}\}$ Since, X voted and Y did not vote. So, we can write (X, Y) $\notin R$.

(ii). (a) both (X, W) and (W, X) $\in R$

Given, $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting right in general election - 2019}\}$ Since, X voted and W also voted. So, we can write both (X, W) and (W, X) $\in R$.

(iii). (a) $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \in R$

Given, $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting right in general election - 2019}\}$ Since, all three friends voted. So, $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \in R$

(iv). (c) Equivalence relation

Given, $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting right in general election - 2019} \}$ Here, $(V, V) \in R$ So, R is reflexive. If V_1 and V_2 both use their voting rights, Then if $(V_1, V_2) \in R$ then $(V_2, V_1) \in R$ Hence, R is symmetric. If $(V_1, V_2) \in R$ then $(V_2, V_3) \in R$ Then $(V_1, V_3) \in R$

Hence, R is transitive.Since R is reflexive, symmetric and transitive.Hence, R is an equivalence relation.

(v). (a) All those eligible voters who cast their votes

Given, $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting right in general election } - 2019\}$

So, Mr. Shyam will be related to all eligible voters who casted their votes.

Question 25:

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by $y = x^2$.

Answer the following questions using the above information.

- (i). Let $f: R \rightarrow R$ be defined by $(x) = x^2$ is_____
- (a) Neither Surjective nor Injective
- (b) Surjective
- (c) Injective
- (d) Bijective

- (ii). Let $f: N \rightarrow N$ be defined by $(x) = x^2$ is _____
- (a) Surjective but not Injective
- (b) Surjective
- (c) Injective
- (d) Bijective
- (iii). Let f: {1, 2, 3,} \rightarrow {1, 4, 9,} be defined by $f(x) = x^2$ is _____
- (a) Bijective
- (b) Surjective but not Injective
- (c) Injective but Surjective
- (d) Neither Surjective nor Injective
- (iv). Let : $N \rightarrow R$ be defined by $f(x) = x^2$. Range of the function among the following is _____
- ____
- (a) {1, 4, 9, 16, ...}
- (b) {1, 4, 8, 9, 10, ...}
- (c) {1, 4, 9, 15, 16, ...}
- (d) {1, 4, 8, 16, ...}
- (v). The function f: Z \rightarrow Z defined by (x) = x^2 is_____
- (a) Neither Injective nor Surjective
- (b) Injective
- (c) Surjective
- (d) Bijective

Answer:

(i). (a) Neither Surjective nor Injective

Given, $f(x) = x^2$, where f : R - > RFor one-one: $f(x_1) = (x_1)^2$ $f(x_2) = (x_2)^2$ Now, $f(x_1) = f(x_2)$ $=> (x_1)^2 = (x_2)^2$ $=> x_1 = x_2 \text{ or } x_1 = -x_2$ Since x_1 does not have unique image So, it is not one-one. For onto: Let f(x) = y such that $y \in R$ $=> x^2 = y$ $\Rightarrow x = \pm \sqrt{y}$ Since, y is a real number, so it can be negative also and root of a negative number is not real. So, x is not real.

=> f is not onto.

Thus, f(x) is neither Surjective nor injective.

(ii). (c) Injective

Given, $f(x) = x^2$, where f : N - > NFor one-one: $f(x_1) = (x_1)^2$ $f(x_2) = (x_2)^2$ Now, $f(x_1) = f(x_2)$ $=> (x_1)^2 = (x_2)^2$ $=> x_1 = x_2 \text{ or } x_1 = -x_2$


```
Since x_1 cannot be negative since x_1 and x_2 are natural numbers.
So, only option is
When f(x_1) = f(x_2), then x_1 = x_2
Hence, f is one-one
For onto:
Let f(x) = y such that y \in \mathbb{N}
=> x^2 = y
=> x = \pm \sqrt{y}
Since, x is a natural, it will be positive.
So, x = \sqrt{y}
Also, since y is a natural number, let's take y = 2
Now, x = \sqrt{2} which not possible since x is a natural number.
So, f is not onto.
```

(iii). (a) Bijective

Given, $f(x) = x^2$, where $f : \{1, 2, 3, ...\} \rightarrow \{1, 4, 9, ...\}$ For one-one: $f(x_1) = (x_1)^2$ $f(x_2) = (x_2)^2$ Now, $f(x_1) = f(x_2)$ $=> (x_1)^2 = (x_2)^2$ $=> x_1 = x_2$ or $x_1 = -x_2$ Since $x \in \{1, 2, 3, ...\}$, x cannot be negative So, only option is When $f(x_1) = f(x_2)$, then $x_1 = x_2$ Hence, f is one-one For onto:

Let f(x) = y such that $y \in \{1, 4, 9, ...\}$ => $x^2 = y$ => $x = \pm \sqrt{y}$ Since, $x \in \{1, 2, 3, ..\}$ So, $x = \sqrt{y}$ Also, since $y \in \{1, 4, 9, ..\}$, For all values of y, we will get a value of x, where $x \in \{1, 2, 3, ..\}$ So, f is onto. Since f is one-one and onto, Hence, f is bijective.

(iv). (a) {1, 4, 9, 16, ...}

For $f(x) = x^2$, where $f : N \rightarrow R$ Range will be = $\{1^2, 2^2, 3^2, 4^2, ...\} = \{1, 4, 9, 16, ...\}$

(v). (a) Neither Injective nor Surjective

Given, $f(x) = x^2$, where f : Z - > ZFor one-one: $f(x_1) = (x_1)^2$ $f(x_2) = (x_2)^2$ Now, $f(x_1) = f(x_2)$ $=> (x_1)^2 = (x_2)^2$ $=> x_1 = x_2 \text{ or } x_1 = -x_2$ Since x_1 does not have unique image, Hence, f is one-one. For onto: Let f(x) = y such that $y \in Z$

=> x² = y

 $\Rightarrow x = \pm \sqrt{y}$

Since y is an integer, let's take y = 5

Now, $x = \pm \sqrt{5}$ which not possible since $\sqrt{5}$ is not an integer.

So, f is not onto.

Hence, f(x) is neither Surjective nor injective.
